传媒教育网

 找回密码
 实名注册

QQ登录

只需一步,快速开始

搜索
做个试验
楼主: admin
打印 上一主题 下一主题

新闻真实案例库

  [复制链接]
271#
 楼主| 发表于 2019-3-24 22:46:36 | 只看该作者
【案例】

编辑:董莉
272#
 楼主| 发表于 2019-4-3 21:37:23 | 只看该作者
【案例


编辑:吴悠



273#
 楼主| 发表于 2019-4-6 13:44:40 | 只看该作者
【案例】《乡村大世界》安排群众演员
编辑:吴悠

274#
 楼主| 发表于 2019-4-7 15:58:16 | 只看该作者
【案例】数据告诉你,为什么总是谣言比真相跑得快(中英文)
文章来源:科学杂志/再建巴别塔
翻译:刘航、陈天蓝
校对:罗人杰
虚假消息以及其对政治、经济、社会生态可能产生的影响引发了全世界的担忧。为了探究虚假消息究竟是如何传播的,Vosoughi et al.把2006至2017年发布在推特上的传言级联(rumor cascades)搜集在一起进行研究。研究数据显示,大约有126,000条传言被近三百万人传播。虚假消息往往比真实消息传得更广:位列传言级联前1%的内容被散布到了一千至十万人中;然而真实消息的受众却很少能超过一千人。同时,虚假消息的传播速度也比真实消息快得多。消息本身的新奇度和受众的情绪体验可能是造成上述现象的原因。
我们调查了2006至2017年推特上所有核实过的真假消息不同的散布程度。(研究的数据由三百万人转发了超过四百五十万次的126,000条消息组成。)我们根据来自六个独立的事实核查机构的信息来判定消息的真假,它们的判定结果有着95-98%的一致性。虚假消息在任何种类的消息中都明显比真实消息散布得更广、更快、更深入,这一现象在政治消息方面尤为突出,甚至超过了恐怖主义、自然灾害、科学资讯、都市传说、金融消息等方面的传言。我们发现虚假消息比真实消息更加新奇,这点说明了人们更加倾向于分享新奇的消息。虚假的故事激起人们的恐惧、憎恶与惊讶,而真实的故事则激发人们的期望、悲伤、喜悦与信任。与普遍看法不同,机器人加速真假消息传播的程度是相同的,这暗示着虚假消息的传播速度超过真实消息并不是因为机器人,而是人类自身的原因。
关于决策、合作、交流与市场的基础理论都认为对于事实和准确的定义对于几乎每个人的行为决策都至关重要,然而真实与虚假的消息却同样通过网络媒介快速传播。定义真假已经变成一项政府理所当然的工作,而不是人们基于各种事实多层次的讨论。我们的经济体系也未能免于虚假消息的干扰。错误传言影响了股价,并动摇了人们对于大规模投资的积极性。例如,一条声称奥巴马在一场爆炸中受伤的推特使1300亿美金的股值人间蒸发。受网上流传的假消息的影响,我们对于一切消息的原有反应均受到了破坏。
新的技术在促进即时消息交换与大规模消息级联的同时,也助长了虚假消息的传播。然而,尽管我们越来越依靠这些新技术获得消息,我们却很少知道它们到底在多大程度上助长虚假消息的传播。关于虚假消息传播的坊间分析受到了媒体足够的重视,可是很少有大规模的实证调查来探究虚假消息的渗透过程及其社会根源。关于虚假消息传播的研究目前仅局限于小范围的、特殊的样本,忽视了两大重要的科学问题:真实消息与虚假消息的散布过程究竟有何不同?个人判断中的哪些因素造成了这些不同呢?
目前的研究都着重于单一传言的传播,比如希格斯玻色子的发现(the discovery of the Higgs boson)、2010年的海地地震;或者是研究发源于同一个灾难性事件的多种传言,比如2013年波士顿马拉松爆炸案;又或者建立传言散布的理论模型、发明传言甄别技术与可信度衡量办法、探求限制传言传播的方法。但是,几乎没有研究能够彻底地探究为什么虚假消息与真实消息的传播过程不同。
比如说,尽管Del Vicario et al.和 Bessi et al.研究了科学消息与阴谋论的传播,他们并没有衡量这些消息的真实性。科学消息与阴谋论并不一定都是真的,而且它们在文风上截然不同,这种文风的不同对于它们的传播有着重要的影响,但与它们的真实性毫无关系。为了理解虚假消息是如何传播的,我们有必要将真实与虚假的科学消息、阴谋论区分开来,分别研究它们的散布过程,并且将消息按照主题、文风的不同进行分类比较。迄今为止唯一通过真实性来辨别传言的是Friggeri et al.的研究。他分析了散布在Facebook上的4000条传言,但是他的侧重点在于事实调查是如何影响传言传播的,而非虚假消息与真实消息的散布过程有何不同。
在如今的政治生态与学术文献中,围绕着“伪造消息”、社交网络上针对美国内政的境外干涉以及我们对于何谓消息、伪造消息、虚假消息、传言、传言级联的理解产生了许多不固定的术语。在以往,我们用真实性判定伪造消息,但是如今“伪造消息”一词在我们的政治与媒体生态中被高度极化。政客们会利用一种精明的政治策略,将不利于自己身份的消息判定为不可靠的或编造的,并将有利于自身的消息列为可靠消息。由于这个原因,“伪造消息”这个术语已经失去了它本来的意思,从而失去了其学术性。因此,在这篇论文中,我们有意地避免使用“伪造消息”这个术语,而是使用更加客观明确的 “真实消息”与“虚假消息”。尽管“伪造消息”与“误报”都暗示着对事实的有意歪曲,我们在论文中并不会探究传言制造者的企图。相反,我们会将焦点放在真实性与被验证为真或假的消息上。
同时,我们有意地接纳了对于“消息”这一词的宽泛的定义。传统看法认为人们对于某一具体事件的阐释与评价是构成“消息”的基础,但现在人们把推特上任何一个公开的说法都叫消息。我们将消息定义为任何含有个人主张的言论,而将传言定义为事件或言论在推特上散布的社会现象。就是说,传言本质上是社会性的,它涉及人与人之间的观点交流。而消息,不管是否被分享,只是一种言论而已。
当一名用户通过发推特、传照片、贴文章链接等方式就某一主题发表个人言论时,传言级联便开始产生了。他人会通过转发的方式扩大传言的影响。一条传言的扩散过程可以看成是一个或多个级联的集合(级联是指由同一个消息来源不停转发从而形成的传言扩散模式)。比如说,一个人可以通过发表对某一具体事件的言论来触发一个传言级联,而第二个人则基于相同的事件建构起独立于第一层级的第二层传言级联。如果两个层级之间互相独立,那么它们就是同一传言的两个级联。级联的规模由转发数量决定,而级联的层数则由用户基于同一事件单独发帖的次数决定。比如说,如果10个人分别发了有关传言A的帖子,但是没有人转发,那么传言A就有10个层级,每个层级的规模为1。同样,如果2个人分别发了关于传言B的帖子,每个帖子都分别有100个人转发,那么传言B就有2个层级,每个层级的规模为100。
我们利用从推特创始之初(2006年)至2017年所有经核实的传言级联中提取出的综合数据探究了真实消息、虚假消息与半真半假消息不同的散布过程。数据包含了被三百万人转发了超过四百五十万次的126,000条消息。我们将那六所独立的事实核查机构(snopes.com, politifact.com, factcheck.org, truthorfiction.com, hoax-slayer.com, and urbanlegends.about.com)调查过的所有传言级联都作为调查样本(这六个机构的判定结果有着95-98%的高度一致性),解构传言的标题、正文以及结论,并自动收集推特上这些传言相应的级联。我们收集了传言所有的英文回复并且利用文字识别技术从图片中提取文字。对于每一条转发,我们都提取出原帖以及所有对原帖的转发。接着,我们量化了级联的深度(原帖被不同用户转发的次数),规模(级联中涉及的用户数),最大广度(在任何深度中级联中所能容纳的最大用户数),和构造式病毒(structural virality)(这是一种插入内容之中的测度,这些内容通过单一的庞大消息源或者多层级模式传播——在这种模式中每个个体的直接参与都是整个传播的一部分)。
当一个传言被转发,级联的深度、规模、最大广度和构造式病毒都会上升(图 1A)。在级联数1~1000的区间内,虚假传言占更大的比例;而在级联数大于1000的区间内,真实传言占更大的比例(图 1B)。政治方面的传言也呈现这一特征(图 1D)。虚假传言的总量在2013、2015年末达到高峰,2016年末再次登顶,与最近的总统选举存在关联(图 1C)。数据还显示,政治方面的虚假传言在2012与2016年总统选举时显著增加,而在2014年俄罗斯合并克里米亚半岛时,半真半假的传言陡增(图 1E)。政治传言是我们数据中最大的传言类别,它含有45000个级联,之后依次是都市传说、商业、恐怖主义、科学、环境、自然灾害方面的传言。
▲传言级联
(A)传言级联的一个例子,以及它的深度、规模、最大广度和构造式扩散过程。“Nodes”指的是推特用户。
(B)真、假、混合型(半真半假)级联的互补累积分布函数(The complementary cumulative distribution functions (CCDFs)),该函数描述了拥有特定级联数的传言在其类别中所占的比例。
(C) 2006~2017年推特上所有散布的真、假、混合传言的季度计数(Quarterly counts),在每个类别中都标注出了具体的样本。
(D)所有真、假、混合型政治方面的传言的互补累积分布函数(CCDFs)。
(E) 2006~2017年推特上所有散布的真、假、混合型政治方面传言的季度计数(Quarterly counts),在每个类别中都标注出了具体的样本。
(F)七种最常见类别传言级联的总数直方图。
当我们分析真假消息的扩散过程时,我们发现虚假消息在任何消息类别中都明显比真实消息散布得更广、更快、更深入。相比于真实级联,明显更多的虚假级联超过了深度10,而虚假级联的前0.01%比真实级联在推特中多散布了8个单位,比原帖多散布了19个单位(图 2A)。虚假消息也比真实消息传到了更多人耳中。位列传言级联前1%的内容被散布到了一千至十万人中;与之形成鲜明反差的是,真实消息的受众却很少能超过一千人(图 2B)。虚假消息在级联的每一个深度上都比真实消息传到更多人耳中,这意味着许多人所转发的虚假消息比真实消息更多(图 2C)。病毒式传播助长了虚假消息的传播,也就是说,虚假消息不仅仅通过传统方式传播,相反,它们更多是采用以病毒式分支流程为特征的点对点传播模式(图 2D)。
▲真假传闻的互补累积分布函数(CCDFs)
(A)深度
(B)规模
(C)最大广度
(D)结构式病毒
(E and F)真假传言级联散布到某一(E)深度与某一(F)用户数量所需要的分钟数
(G)每个深度上不同的用户数
(H)真假级联每个深度的平均广度。在(H)中,图表呈对数正态分布。标准误差集中在传言层面。(也就是说,同一个传言的不同级联集中在一起)
真实消息若要传到1500人耳中,需要花比虚假消息多5倍的时间(图 2F);若要形成一个深度为10的级联,则要花虚假消息20倍的时间(图 2E)。在每个深度的级联上,虚假消息都比真实消息散布得更广(图 2H)、被更多用户转发(图 2G).。
虚假的政治消息(图 1D)传播得更深入(图 3A)、更广泛(图 3C)、受众更多(图 3B)并且比任何其他类别的虚假消息都具有病毒性(图 3D)。虚假的政治消息的传播也更快达到一定深度(图 3E),而且,它传到20000人耳中所需要的时间,几乎是其他类别的虚假消息传到10000人耳中所需要的时间的三分之一(图 3F)。虽然其他种类的虚假消息在1-10的深度抵达同样数量的独特用户,但虚假政治消息通常会在深度上超过10的情况下达到最独特的用户(图3G)。虽然所有其他种类的虚假消息以较浅的深度传播得稍微更广,虚假政治消息则以更大的深度传递地更广,表明更流行的虚假政治消息表现出更广和更快的扩散动态(图3H)。对所有消息种类的分析表明那些关于政治、都市传说和科学的消息传播到的人数最多,然而关于政治和都市传说的消息传播得最快,并且在结构式病毒方面,它们是最具病毒性的。
▲虚假政治和其他类型的传言级联的补充累积分布函数(CCDF)
(A) 深度
(B) 规模
(C) 最大广度
(D) 结构式病毒
(E和F)虚假政治消息和其他虚假消息级联散布到某一(E)深度和某一(F)用户数量所需要的分钟数
(G) 每个深度上不同的用户数
(H) 传言级联每个深度的平均广度。在(H)中,图表呈对数正态分布。标准误差集中在传言层面。
人们可能怀疑网络中结构因素或者在级联中的用户个体性格特征解释了为什么假比真以更快的速度行进:可能那些传递虚假消息的人“追随”更多的人,并且有更多的追随者,推文发得更频繁,他们更多是那些通过“验证”的用户,或者使用推特的时间更久。但是当我们比较涉及真假传言级联的用户时,发现在每种情况下,事实与此恰恰相反:传递虚假消息的用户明显有更少的追随者(K-S test = 0.104, P ~ 0.0)、自己也追随更少的人(K-S test = 0.136, P ~ 0.0);在推特上明显不那么活跃(K-S test = 0.054, P ~ 0.0);被验证的显然更少(K-S test = 0.004, P < 0.001);使用推特的时间更少(K-S test = 0.125, P ~ 0.0)。尽管有这些差异,虚假消息的扩散依旧比事实更广更快,所以原因并非如此。
▲估计消息的传播,真假消息的新奇性和对消息的回应中含有的情绪内容之间的相关性的模型
(A) 关于这些测量测试关于参与真假传言级联的用户的描述性统计以及关于这些度量在真假传言级联中分布差异的K-S测试。
(B) 预计用户转发传言偏好的逻辑回归模型结果作为一个多变量函数展示在左边;系数:logit系数;z,得分。
(C) 与用户转发传言推文前60天中其推特语库中所显示内容相比较,在真(绿色)假(红色)传言推文中消息唯一性(IU)、缩放的Bhattacharyya距离(BD)和K-L散度(KL)的差异。
(D) 对真(绿色)假(红色)传言的回应中含有的情绪内容,由NRC分类为七个层次。
(E) 与用户观看传言推文前60天中看到的推文语库中内容相比较,真假传言推文IU,KL和BD的平均值和方差。以及关于它们在真假传言中差异的K-S测试。
(F) 对真假传言的回应中含有的情绪内容(由NRC分类为七个层次)的平均值和方差,以及关于它们在真假传言中差异的K-S测试。所有标准误差都集中在传言层面,并且所有模型都在传言级别上通过集中稳定的标准误差进行估计。
当我们预设一个转发偏好的模型时,我们发现虚假消息被转发的可能性比真实消息多70%,即使当我们控制了账户年龄,活动水平、转发者数量和原始推文作者的关注量以及原始推文作者是否是已经验证的用户后。由于用户的特征和网络框架不能解释真假消息传播的差异,我们寻找了它们传播差异的其他解释。
一种解释来自信息理论和贝叶斯决策理论。新奇吸引人们的注意力,促进了富有成效的决策制定,并且鼓励信息分享,因为新奇更新了我们对这个世界的理解。当一条消息是新奇的,它不仅令人惊讶,而且更有价值,无论是从信息的理论前景(此处它对做决策提供了巨大的帮助)还是从社会前景(此处它传达了人们处于“知道”或者有渠道获取独特的“内部”消息的社会地位)来看。因此我们测试了虚假消息是否比真实消息更新奇以及是否推特用户更偏向于转发新奇的消息。
为了评定新奇性,我们随机选择5000个传播真假传言的用户,并在决定转发传言前60天内他们所接触的推文中随机抽取25000个样本。之后我们指定了一个LDA模型(latent Dirichlet Allocation Topic model)(其中包含200个主题,并且在1000万条英语推文中试验过)计算传言推文和用户转发传言推文前接触的所有推文间的信息距离。它显示出我们数据中的每条推文在200个主题中的概率分布。然后,通过将传言推文的主题分布和用户转发前60天中所接触到推文的主题分布加以比较,我们测量了真假传言中信息的新奇程度。我们发现,在所有新奇性度量中,虚假传言比真实消息要新奇得多,显示出明显更高的消息唯一性(K-S检验=0.457,P~0.0),Kullback-Leibler(K-L)发散性(K-S检验=0.433,P~0.0)和Bhattacharyya距离(K-S检验=0.4)。15,P~0)(类似于Hellinger距离)。最后的两个指标用于测量输入推文主题内容的概率分布和用户先前接触的推文语库之间的差异。
尽管测量中虚假传言比真实消息更新奇,但用户却未必察觉到了这点。因此,通过比较用户对真假传言回应中的情绪内容,我们评估用户对包含真假传言的信息的看法。我们使用加拿大国家委员会(NRC)编制的标准词典对回复中的情绪进行分类,得到了一个详尽的包含140000英语词汇以及它们与8种情绪(基于Plutchik的工作,基本情绪是:愤怒、恐惧、期望、信任、惊讶、悲伤、快乐、厌恶)之间联系的列表,以及 32000个推特标签与其相关情绪的列表。我们从回复推文中移除禁用词和网址后,计算了推文中出现的与8种情绪相关联的单词比重,为每个回复设立一个情绪偏向(即以上归纳的情绪之一)。我们发现虚假传言所激发的回复中表达了更多的惊讶(KS测试= 0.205,P~0.0)(证实了新奇性的假设)和厌恶(KS测试= 0.102,P~0.0),然而真实传言所激发的回复中则表达了更多的悲伤(KS测试= 0.037,P~0.0)、期望(KS测试= 0.038,P~0.0)、愉快(KS测试=0.061,P~0.0)和信任(KS测试= 0.060,P~0.0)(图4,D和F)。虚假消息回复中表达的情绪似乎显明了,除新奇之外,还有激发人们分享虚假消息的其他因素。我们不能认定新奇导致转发或者新奇是使虚假消息转发更多的唯一原因,即使我们的确发现虚假消息更新奇并且新奇的消息更可能被转发。
大量诊断统计和操作检查验证了我们的结果并证明它们的鲁棒性(译注:指算法的稳定性)。第一,由于每个真假传言都存在多层级联,因此与相同传言的级联相关联的方差和误差项将是相关的。因此,我们选择了集中稳定的标准误差,并计算了它们在传言水平上集中的所有方差。通过比较有无集中误差的分析来检测我们结果的鲁棒性,我们发现即使这种集中降低了我们估算的准确性,我们结果的方向、大小和重要性也没有改变,而且chi-square (P ~ 0.0) 和拟合优度检验(d = 3.4649×10-6,P~1.0)表明这些模型是很精确的。
第二,为了让六个组织核查推文事实,我们选择样本的限制中可能会出现选择偏好。事实核查可能会挑选某些类型的传言或许更偏向于它们。为了验证我们的分析在这一选择上的鲁棒性以及我们的结果对所有真假传言级联的普适性,我们独立检验另一个未经任何事实核查组织验证的传言级联样本。这些传言是由三个MIT和Wellesley大学的本科生查证的。自2016年起,我们训练这些学生使用我们自动传言探测算法在300万份英文推特中去检测传言。这些本科生助手们使用网上简单的搜索引擎调查了这些检测过的传言的真实性。在他们研究基础上,我们要求他们标记这些传言为真、假或者混合,并且移除掉所有以前被事实核查组织查证过的传言。我们的这些助手们独立工作且没有受到其他干涉,他们调查的13240个传言级联有90%的吻合度,达到了0.88的Fleiss’ kappa。当我们比较助手们达成一致的真假传言的传播动态时,发现与我们主数据预计的结果十分吻合。那些稳定数据中的虚假传言的深度、规模、最大广度、结构式病毒和速度,以及每个深度上的最大用户数量数值上都更大。当我们扩展到对那些仅获得了大多数人同意而不是有着一致意见的消息时,我们得到了同样的结果。
第三,尽管真假消息的传播方式的差异的确值得一探究竟,不管其中是否有机器人活动,但人们依旧可能担心我们关于人类判断的结论可能会因为我们分析中机器人的存在而脱轨。因此,在进行分析之前,我们用了一个复杂的机器检测算法来识别、移除所有的机器人。当我们把机器人的流量增加进分析之中,我们发现我们的主要结论都没有改变——在所有类别的消息中,虚假消息依旧比真实消息传播得更远、更快、更深、更广。当我们移除所有的由机器人开始的推文级联时(包括人类对机器人原始推文的转发),或者当我们用第二个独立的机器人检测算法,并且(为了证实我们分析的鲁棒性)改变算法探测的灵敏度阈值时,分析结果依然保持不变。机器人参与同时加速了真假传言的传播,它大致上同等地影响了它们的传播。这就表明虚假消息比真实消息传播得更远、更快、更深、更广的原因出于人类,而非机器人。
最后,更多对真假消息传播差异的行为解释的研究显然是必要的。尤其是需要与用户更直接的互动,通过采访、调查、临床实验甚至神经影像,对驱使人们传播真假消息的动机有更清晰的认识。在以后的工作中,我们支持人们运用这些方法或其他途径去调查驱使人们传播真假消息的因素。
虚假消息可能会导致恐怖袭击或者自然灾害期间资源的错误分配、商业投资失误和选举误导。不幸的是,即使网络虚假消息的数量明显增加,对于虚假消息传播方式和原因的科学理解目前还建立在临时的而非大规模、系统的研究上。我们对推特上传播的已验明的真假传言的分析证实:虚假消息的传递更具有渗透性,它同样推翻了关于虚假消息传播的传统观念,人们可能认为网络框架与个人偏好促进了虚假消息的传播,但是结果却恰恰相反。
尽管网络和个人因素更偏好于事实,但人们却更有可能转发虚假消息,推动虚假消息传播。此外,即使最近国会委员会就美国虚假消息问题举行的例会仍聚焦于自动机器人在传播虚假消息中扮演的角色,我们的结论也是:人类的行为比机器人更多促成真假消息传递的差异。这表明虚假消息遏制政策也应该要强调行为干涉,例如标榜、鼓励阻止假消息的传播,而不是完全集中在削减机器人。理解虚假消息如何传播只是朝着控制它迈出的第一步。我们希望我们的工作在虚假消息传播的原因、结果和可能的解决方法方面能激起的更大范围的研究。
Science  09 Mar 2018:
Vol. 359, Issue 6380, pp. 1146-1151
DOI: 10.1126/science.aap9559
Lies spread faster than the truth
There is worldwide concern over false news and the possibility that it can influence political, economic, and social well-being. To understand how false news spreads, Vosoughi et al. used a data set of rumor cascades on Twitter from 2006 to 2017. About 126,000 rumors were spread by ~3 million people. False news reached more people than the truth; the top 1% of false news cascades diffused to between 1000 and 100,000 people, whereas the truth rarely diffused to more than 1000 people. Falsehood also diffused faster than the truth. The degree of novelty and the emotional reactions of recipients may be responsible for the differences observed.
Science, this issue p. 1146
Abstract
We investigated the differential diffusion of all of the verified true and false news stories distributed on Twitter from 2006 to 2017. The data comprise ~126,000 stories tweeted by ~3 million people more than 4.5 million times. We classified news as true or false using information from six independent fact-checking organizations that exhibited 95 to 98% agreement on the classifications. Falsehood diffused significantly farther, faster, deeper, and more broadly than the truth in all categories of information, and the effects were more pronounced for false political news than for false news about terrorism, natural disasters, science, urban legends, or financial information. We found that false news was more novel than true news, which suggests that people were more likely to share novel information. Whereas false stories inspired fear, disgust, and surprise in replies, true stories inspired anticipation, sadness, joy, and trust. Contrary to conventional wisdom, robots accelerated the spread of true and false news at the same rate, implying that false news spreads more than the truth because humans, not robots, are more likely to spread it.
Foundational theories of decision-making (1–3), cooperation (4), communication (5), and markets (6) all view some conceptualization of truth or accuracy as central to the functioning of nearly every human endeavor. Yet, both true and false information spreads rapidly through online media. Defining what is true and false has become a common political strategy, replacing debates based on a mutually agreed on set of facts. Our economies are not immune to the spread of falsity either. False rumors have affected stock prices and the motivation for large-scale investments, for example, wiping out $130 billion in stock value after a false tweet claimed that Barack Obama was injured in an explosion (7). Indeed, our responses to everything from natural disasters (8, 9) to terrorist attacks (10) have been disrupted by the spread of false news online.
New social technologies, which facilitate rapid information sharing and large-scale information cascades, can enable the spread of misinformation (i.e., information that is inaccurate or misleading). But although more and more of our access to information and news is guided by these new technologies (11), we know little about their contribution to the spread of falsity online. Though considerable attention has been paid to anecdotal analyses of the spread of false news by the media (12), there are few large-scale empirical investigations of the diffusion of misinformation or its social origins. Studies of the spread of misinformation are currently limited to analyses of small, ad hoc samples that ignore two of the most important scientific questions: How do truth and falsity diffuse differently, and what factors of human judgment explain these differences?
Current work analyzes the spread of single rumors, like the discovery of the Higgs boson (13) or the Haitian earthquake of 2010 (14), and multiple rumors from a single disaster event, like the Boston Marathon bombing of 2013 (10), or it develops theoretical models of rumor diffusion (15), methods for rumor detection (16), credibility evaluation (17, 18), or interventions to curtail the spread of rumors (19). But almost no studies comprehensively evaluate differences in the spread of truth and falsity across topics or examine why false news may spread differently than the truth. For example, although Del Vicario et al. (20) and Bessi et al. (21) studied the spread of scientific and conspiracy-theory stories, they did not evaluate their veracity. Scientific and conspiracy-theory stories can both be either true or false, and they differ on stylistic dimensions that are important to their spread but orthogonal to their veracity. To understand the spread of false news, it is necessary to examine diffusion after differentiating true and false scientific stories and true and false conspiracy-theory stories and controlling for the topical and stylistic differences between the categories themselves. The only study to date that segments rumors by veracity is that of Friggeri et al. (19), who analyzed ~4000 rumors spreading on Facebook and focused more on how fact checking affects rumor propagation than on how falsity diffuses differently than the truth (22).
In our current political climate and in the academic literature, a fluid terminology has arisen around “fake news,” foreign interventions in U.S. politics through social media, and our understanding of what constitutes news, fake news, false news, rumors, rumor cascades, and other related terms. Although, at one time, it may have been appropriate to think of fake news as referring to the veracity of a news story, we now believe that this phrase has been irredeemably polarized in our current political and media climate. As politicians have implemented a political strategy of labeling news sources that do not support their positions as unreliable or fake news, whereas sources that support their positions are labeled reliable or not fake, the term has lost all connection to the actual veracity of the information presented, rendering it meaningless for use in academic classification. We have therefore explicitly avoided the term fake news throughout this paper and instead use the more objectively verifiable terms “true” or “false” news. Although the terms fake news and misinformation also imply a willful distortion of the truth, we do not make any claims about the intent of the purveyors of the information in our analyses. We instead focus our attention on veracity and stories that have been verified as true or false.
We also purposefully adopt a broad definition of the term news. Rather than defining what constitutes news on the basis of the institutional source of the assertions in a story, we refer to any asserted claim made on Twitter as news (we defend this decision in the supplementary materials section on “reliable sources,” section S1.2). We define news as any story or claim with an assertion in it and a rumor as the social phenomena of a news story or claim spreading or diffusing through the Twitter network. That is, rumors are inherently social and involve the sharing of claims between people. News, on the other hand, is an assertion with claims, whether it is shared or not.
A rumor cascade begins on Twitter when a user makes an assertion about a topic in a tweet, which could include written text, photos, or links to articles online. Others then propagate the rumor by retweeting it. A rumor’s diffusion process can be characterized as having one or more cascades, which we define as instances of a rumor-spreading pattern that exhibit an unbroken retweet chain with a common, singular origin. For example, an individual could start a rumor cascade by tweeting a story or claim with an assertion in it, and another individual could independently start a second cascade of the same rumor (pertaining to the same story or claim) that is completely independent of the first cascade, except that it pertains to the same story or claim. If they remain independent, they represent two cascades of the same rumor. Cascades can be as small as size one (meaning no one retweeted the original tweet). The number of cascades that make up a rumor is equal to the number of times the story or claim was independently tweeted by a user (not retweeted). So, if a rumor “A” is tweeted by 10 people separately, but not retweeted, it would have 10 cascades, each of size one. Conversely, if a second rumor “B” is independently tweeted by two people and each of those two tweets is retweeted 100 times, the rumor would consist of two cascades, each of size 100.
Here we investigate the differential diffusion of true, false, and mixed (partially true, partially false) news stories using a comprehensive data set of all of the fact-checked rumor cascades that spread on Twitter from its inception in 2006 to 2017. The data include ~126,000 rumor cascades spread by ~3 million people more than 4.5 million times. We sampled all rumor cascades investigated by six independent fact-checking organizations (snopes.com, politifact.com, factcheck.org, truthorfiction.com, hoax-slayer.com, and urbanlegends.about.com) by parsing the title, body, and verdict (true, false, or mixed) of each rumor investigation reported on their websites and automatically collecting the cascades corresponding to those rumors on Twitter. The result was a sample of rumor cascades whose veracity had been agreed on by these organizations between 95 and 98% of the time. We cataloged the diffusion of the rumor cascades by collecting all English-language replies to tweets that contained a link to any of the aforementioned websites from 2006 to 2017 and used optical character recognition to extract text from images where needed. For each reply tweet, we extracted the original tweet being replied to and all the retweets of the original tweet. Each retweet cascade represents a rumor propagating on Twitter that has been verified as true or false by the fact-checking organizations (see the supplementary materials for more details on cascade construction). We then quantified the cascades’ depth (the number of retweet hops from the origin tweet over time, where a hop is a retweet by a new unique user), size (the number of users involved in the cascade over time), maximum breadth (the maximum number of users involved in the cascade at any depth), and structural virality (23) (a measure that interpolates between content spread through a single, large broadcast and that which spreads through multiple generations, with any one individual directly responsible for only a fraction of the total spread) (see the supplementary materials for more detail on the measurement of rumor diffusion).
As a rumor is retweeted, the depth, size, maximum breadth, and structural virality of the cascade increase (Fig. 1A). A greater fraction of false rumors experienced between 1 and 1000 cascades, whereas a greater fraction of true rumors experienced more than 1000 cascades (Fig. 1B); this was also true for rumors based on political news (Fig. 1D). The total number of false rumors peaked at the end of both 2013 and 2015 and again at the end of 2016, corresponding to the last U.S. presidential election (Fig. 1C). The data also show clear increases in the total number of false political rumors during the 2012 and 2016 U.S. presidential elections (Fig. 1E) and a spike in rumors that contained partially true and partially false information during the Russian annexation of Crimea in 2014 (Fig. 1E). Politics was the largest rumor category in our data, with ~45,000 cascades, followed by urban legends, business, terrorism, science, entertainment, and natural disasters (Fig. 1F).
Fig. 1 Rumor cascades.
(A) An example rumor cascade collected by our method as well as its depth, size, maximum breadth, and structural virality over time. “Nodes” are users. (B) The complementary cumulative distribution functions (CCDFs) of true, false, and mixed (partially true and partially false) cascades, measuring the fraction of rumors that exhibit a given number of cascades. (C) Quarterly counts of all true, false, and mixed rumor cascades that diffused on Twitter between 2006 and 2017, annotated with example rumors in each category. (D) The CCDFs of true, false, and mixed political cascades. (E) Quarterly counts of all true, false, and mixed political rumor cascades that diffused on Twitter between 2006 and 2017, annotated with example rumors in each category. (F) A histogram of the total number of rumor cascades in our data across the seven most frequent topical categories.
When we analyzed the diffusion dynamics of true and false rumors, we found that falsehood diffused significantly farther, faster, deeper, and more broadly than the truth in all categories of information [Kolmogorov-Smirnov (K-S) tests are reported in tables S3 to S10]. A significantly greater fraction of false cascades than true cascades exceeded a depth of 10, and the top 0.01% of false cascades diffused eight hops deeper into the Twittersphere than the truth, diffusing to depths greater than 19 hops from the origin tweet (Fig. 2A). Falsehood also reached far more people than the truth. Whereas the truth rarely diffused to more than 1000 people, the top 1% of false-news cascades routinely diffused to between 1000 and 100,000 people (Fig. 2B). Falsehood reached more people at every depth of a cascade than the truth, meaning that many more people retweeted falsehood than they did the truth (Fig. 2C). The spread of falsehood was aided by its virality, meaning that falsehood did not simply spread through broadcast dynamics but rather through peer-to-peer diffusion characterized by a viral branching process (Fig. 2D).
Fig. 2 Complementary cumulative distribution functions (CCDFs) of true and false rumor cascades.
(A) Depth. (B) Size. (C) Maximum breadth. (D) Structural virality. (E and F) The number of minutes it takes for true and false rumor cascades to reach any (E) depth and (F) number of unique Twitter users. (G) The number of unique Twitter users reached at every depth and (H) the mean breadth of true and false rumor cascades at every depth. In (H), plot is lognormal. Standard errors were clustered at the rumor level (i.e., cascades belonging to the same rumor were clustered together; see supplementary materials for additional details).
It took the truth about six times as long as falsehood to reach 1500 people (Fig. 2F) and 20 times as long as falsehood to reach a cascade depth of 10 (Fig. 2E). As the truth never diffused beyond a depth of 10, we saw that falsehood reached a depth of 19 nearly 10 times faster than the truth reached a depth of 10 (Fig. 2E). Falsehood also diffused significantly more broadly (Fig. 2H) and was retweeted by more unique users than the truth at every cascade depth (Fig. 2G).
False political news (Fig. 1D) traveled deeper (Fig. 3A) and more broadly (Fig. 3C), reached more people (Fig. 3B), and was more viral than any other category of false information (Fig. 3D). False political news also diffused deeper more quickly (Fig. 3E) and reached more than 20,000 people nearly three times faster than all other types of false news reached 10,000 people (Fig. 3F). Although the other categories of false news reached about the same number of unique users at depths between 1 and 10, false political news routinely reached the most unique users at depths greater than 10 (Fig. 3G). Although all other categories of false news traveled slightly more broadly at shallower depths, false political news traveled more broadly at greater depths, indicating that more-popular false political news items exhibited broader and more-accelerated diffusion dynamics (Fig. 3H). Analysis of all news categories showed that news about politics, urban legends, and science spread to the most people, whereas news about politics and urban legends spread the fastest and were the most viral in terms of their structural virality (see fig. S11 for detailed comparisons across all topics).
Fig. 3 Complementary cumulative distribution functions (CCDFs) of false political and other types of rumor cascades.
(A) Depth. (B) Size. (C) Maximum breadth. (D) Structural virality. (E and F) The number of minutes it takes for false political and other false news cascades to reach any (E) depth and (F) number of unique Twitter users. (G) The number of unique Twitter users reached at every depth and (H) the mean breadth of these false rumor cascades at every depth. In (H), plot is lognormal. Standard errors were clustered at the rumor level.
One might suspect that structural elements of the network or individual characteristics of the users involved in the cascades explain why falsity travels with greater velocity than the truth. Perhaps those who spread falsity “followed” more people, had more followers, tweeted more often, were more often “verified” users, or had been on Twitter longer. But when we compared users involved in true and false rumor cascades, we found that the opposite was true in every case. Users who spread false news had significantly fewer followers (K-S test = 0.104, P ~ 0.0), followed significantly fewer people (K-S test = 0.136, P ~ 0.0), were significantly less active on Twitter (K-S test = 0.054, P ~ 0.0), were verified significantly less often (K-S test = 0.004, P < 0.001), and had been on Twitter for significantly less time (K-S test = 0.125, P ~ 0.0) (Fig. 4A). Falsehood diffused farther and faster than the truth despite these differences, not because of them.
Fig. 4 Models estimating correlates of news diffusion, the novelty of true and false news, and the emotional content of replies to news.
(A) Descriptive statistics on users who participated in true and false rumor cascades as well as K-S tests of the differences in the distributions of these measures across true and false rumor cascades. (B) Results of a logistic regression model estimating users’ likelihood of retweeting a rumor as a function of variables shown at the left. coeff, logit coefficient; z, z score. (C) Differences in the information uniqueness (IU), scaled Bhattacharyya distance (BD), and K-L divergence (KL) of true (green) and false (red) rumor tweets compared to the corpus of prior tweets the user was exposed to in the 60 days before retweeting the rumor tweet. (D) The emotional content of replies to true (green) and false (red) rumor tweets across seven dimensions categorized by the NRC. (E) Mean and variance of the IU, KL, and BD of true and false rumor tweets compared to the corpus of prior tweets the user has seen in the 60 days before seeing the rumor tweet as well as K-S tests of their differences across true and false rumors. (F) Mean and variance of the emotional content of replies to true and false rumor tweets across seven dimensions categorized by the NRC as well as K-S tests of their differences across true and false rumors. All standard errors are clustered at the rumor level, and all models are estimated with cluster-robust standard errors at the rumor level.
When we estimated a model of the likelihood of retweeting, we found that falsehoods were 70% more likely to be retweeted than the truth (Wald chi-square test, P ~ 0.0), even when controlling for the account age, activity level, and number of followers and followees of the original tweeter, as well as whether the original tweeter was a verified user (Fig. 4B). Because user characteristics and network structure could not explain the differential diffusion of truth and falsity, we sought alternative explanations for the differences in their diffusion dynamics.
One alternative explanation emerges from information theory and Bayesian decision theory. Novelty attracts human attention (24), contributes to productive decision-making (25), and encourages information sharing (26) because novelty updates our understanding of the world. When information is novel, it is not only surprising, but also more valuable, both from an information theoretic perspective [in that it provides the greatest aid to decision-making (25)] and from a social perspective [in that it conveys social status on one that is “in the know” or has access to unique “inside” information (26)]. We therefore tested whether falsity was more novel than the truth and whether Twitter users were more likely to retweet information that was more novel.
To assess novelty, we randomly selected ~5000 users who propagated true and false rumors and extracted a random sample of ~25,000 tweets that they were exposed to in the 60 days prior to their decision to retweet a rumor. We then specified a latent Dirichlet Allocation Topic model (27), with 200 topics and trained on 10 million English-language tweets, to calculate the information distance between the rumor tweets and all the prior tweets that users were exposed to before retweeting the rumor tweets. This generated a probability distribution over the 200 topics for each tweet in our data set. We then measured how novel the information in the true and false rumors was by comparing the topic distributions of the rumor tweets with the topic distributions of the tweets to which users were exposed in the 60 days before their retweet. We found that false rumors were significantly more novel than the truth across all novelty metrics, displaying significantly higher information uniqueness (K-S test = 0.457, P ~ 0.0) (28), Kullback-Leibler (K-L) divergence (K-S test = 0.433, P ~ 0.0) (29), and Bhattacharyya distance (K-S test = 0.415, P ~ 0.0) (which is similar to the Hellinger distance) (30). The last two metrics measure differences between probability distributions representing the topical content of the incoming tweet and the corpus of previous tweets to which users were exposed.
Although false rumors were measurably more novel than true rumors, users may not have perceived them as such. We therefore assessed users’ perceptions of the information contained in true and false rumors by comparing the emotional content of replies to true and false rumors. We categorized the emotion in the replies by using the leading lexicon curated by the National Research Council Canada (NRC), which provides a comprehensive list of ~140,000 English words and their associations with eight emotions based on Plutchik’s (31) work on basic emotion—anger, fear, anticipation, trust, surprise, sadness, joy, and disgust (32)—and a list of ~32,000 Twitter hashtags and their weighted associations with the same emotions (33). We removed stop words and URLs from the reply tweets and calculated the fraction of words in the tweets that related to each of the eight emotions, creating a vector of emotion weights for each reply that summed to one across the emotions. We found that false rumors inspired replies expressing greater surprise (K-S test = 0.205, P ~ 0.0), corroborating the novelty hypothesis, and greater disgust (K-S test = 0.102, P ~ 0.0), whereas the truth inspired replies that expressed greater sadness (K-S test = 0.037, P ~ 0.0), anticipation (K-S test = 0.038, P ~ 0.0), joy (K-S test = 0.061, P ~ 0.0), and trust (K-S test = 0.060, P ~ 0.0) (Fig. 4, D and F). The emotions expressed in reply to falsehoods may illuminate additional factors, beyond novelty, that inspire people to share false news. Although we cannot claim that novelty causes retweets or that novelty is the only reason why false news is retweeted more often, we do find that false news is more novel and that novel information is more likely to be retweeted.
Numerous diagnostic statistics and manipulation checks validated our results and confirmed their robustness. First, as there were multiple cascades for every true and false rumor, the variance of and error terms associated with cascades corresponding to the same rumor will be correlated. We therefore specified cluster-robust standard errors and calculated all variance statistics clustered at the rumor level. We tested the robustness of our findings to this specification by comparing analyses with and without clustered errors and found that, although clustering reduced the precision of our estimates as expected, the directions, magnitudes, and significance of our results did not change, and chi-square (P ~ 0.0) and deviance (d) goodness-of-fit tests (d = 3.4649 × 10–6, P ~ 1.0) indicate that the models are well specified (see supplementary materials for more detail).
Second, a selection bias may arise from the restriction of our sample to tweets fact checked by the six organizations we relied on. Fact checking may select certain types of rumors or draw additional attention to them. To validate the robustness of our analysis to this selection and the generalizability of our results to all true and false rumor cascades, we independently verified a second sample of rumor cascades that were not verified by any fact-checking organization. These rumors were fact checked by three undergraduate students at Massachusetts Institute of Technology (MIT) and Wellesley College. We trained the students to detect and investigate rumors with our automated rumor-detection algorithm running on 3 million English-language tweets from 2016 (34). The undergraduate annotators investigated the veracity of the detected rumors using simple search queries on the web. We asked them to label the rumors as true, false, or mixed on the basis of their research and to discard all rumors previously investigated by one of the fact-checking organizations. The annotators, who worked independently and were not aware of one another, agreed on the veracity of 90% of the 13,240 rumor cascades that they investigated and achieved a Fleiss’ kappa of 0.88. When we compared the diffusion dynamics of the true and false rumors that the annotators agreed on, we found results nearly identical to those estimated with our main data set (see fig. S17). False rumors in the robustness data set had greater depth (K-S test = 0.139, P ~ 0.0), size (K-S test = 0.131, P ~ 0.0), maximum breadth (K-S test = 0.139, P ~ 0.0), structural virality (K-S test = 0.066, P ~ 0.0), and speed (fig. S17) and a greater number of unique users at each depth (fig. S17). When we broadened the analysis to include majority-rule labeling, rather than unanimity, we again found the same results (see supplementary materials for results using majority-rule labeling).
Third, although the differential diffusion of truth and falsity is interesting with or without robot, or bot, activity, one may worry that our conclusions about human judgment may be biased by the presence of bots in our analysis. We therefore used a sophisticated bot-detection algorithm (35) to identify and remove all bots before running the analysis. When we added bot traffic back into the analysis, we found that none of our main conclusions changed—false news still spread farther, faster, deeper, and more broadly than the truth in all categories of information. The results remained the same when we removed all tweet cascades started by bots, including human retweets of original bot tweets (see supplementary materials, section S8.3) and when we used a second, independent bot-detection algorithm (see supplementary materials, section S8.3.5) and varied the algorithm’s sensitivity threshold to verify the robustness of our analysis (see supplementary materials, section S8.3.4). Although the inclusion of bots, as measured by the two state-of-the-art bot-detection algorithms we used in our analysis, accelerated the spread of both true and false news, it affected their spread roughly equally. This suggests that false news spreads farther, faster, deeper, and more broadly than the truth because humans, not robots, are more likely to spread it.
Finally, more research on the behavioral explanations of differences in the diffusion of true and false news is clearly warranted. In particular, more robust identification of the factors of human judgment that drive the spread of true and false news online requires more direct interaction with users through interviews, surveys, lab experiments, and even neuroimaging. We encourage these and other approaches to the investigation of the factors of human judgment that drive the spread of true and false news in future work.
False news can drive the misallocation of resources during terror attacks and natural disasters, the misalignment of business investments, and misinformed elections. Unfortunately, although the amount of false news online is clearly increasing (Fig. 1, C and E), the scientific understanding of how and why false news spreads is currently based on ad hoc rather than large-scale systematic analyses. Our analysis of all the verified true and false rumors that spread on Twitter confirms that false news spreads more pervasively than the truth online. It also overturns conventional wisdom about how false news spreads. Though one might expect network structure and individual characteristics of spreaders to favor and promote false news, the opposite is true. The greater likelihood of people to retweet falsity more than the truth is what drives the spread of false news, despite network and individual factors that favor the truth. Furthermore, although recent testimony before congressional committees on misinformation in the United States has focused on the role of bots in spreading false news (36), we conclude that human behavior contributes more to the differential spread of falsity and truth than automated robots do. This implies that misinformation-containment policies should also emphasize behavioral interventions, like labeling and incentives to dissuade the spread of misinformation, rather than focusing exclusively on curtailing bots. Understanding how false news spreads is the first step toward containing it. We hope our work inspires more large-scale research into the causes and consequences of the spread of false news as well as its potential cures.
Supplementary Materials
www.sciencemag.org/content/359/6380/1146/suppl/DC1
Materials and Methods
Figs. S1 to S20
Tables S1 to S39
References (37–75)
http://www.sciencemag.org/about/science-licenses-journal-article-reuse
This is an article distributed under the terms of the Science Journals Default License.
Acknowledgments: We are indebted to Twitter for providing funding and access to the data. We are also grateful to members of the MIT research community for invaluable discussions. The research was approved by the MIT institutional review board. The analysis code is freely available at https://goo.gl/forms/AKIlZujpexhN7fY33. The entire data set is also available, from the same link, upon signing an access agreement stating that (i) you shall only use the data set for the purpose of validating the results of the MIT study and for no other purpose; (ii) you shall not attempt to identify, reidentify, or otherwise deanonymize the data set; and (iii) you shall not further share, distribute, publish, or otherwise disseminate the data set. Those who wish to use the data for any other purposes can contact and make a separate agreement with Twitter.
编辑:吴悠

275#
发表于 2019-5-14 20:41:43 | 只看该作者
【案例】

编辑:高杰
276#
发表于 2019-5-17 13:13:17 | 只看该作者
【案例】


观察者网的小编不太会改编经济类新闻报道,数学不太好
编辑:高杰

277#
发表于 2019-6-10 16:49:11 | 只看该作者
【案例】
如果不是这两个记者,这里发生的一切不会有人知道

在被选中作为代表的来自世界各国的十几名记者里,我印象最深的除了惨死在土耳其大使馆的沙特记者卡舒吉,还有路透社在缅甸的两名记者,31岁的瓦隆(Wa Lone)和27岁的觉梭(Kyaw Soe Oo)。



当时他们还被关押在监狱里,罪名是违反了缅甸的国家机密法,刑期七年。《时代》没有能够拍摄到两人,于是请他们的妻子手捧自己丈夫的照片,拍了这么一张封面。


今年的普利策奖上,路透社的一组专题获得了国际新闻报道奖。而这组专题里最重磅的,正是两名记者所采写、导致他们被判刑入狱的那篇报道。

之前两名记者被设局抓捕的过程也非常戏剧,犹如电影情节。缅甸军方知道记者们在写那篇报道后,就安排一名警察出面邀请记者吃饭。等到记者到场,警察把事先用旧报纸包好的几份文件硬塞在记者手里。此时其他早已埋伏好的警察从天而降,以记者手中的文件涉及国家机密为由,不由分说地逮捕了他们。

所以,到底是什么样的报道,让这两名记者在国际上摘取了新闻界的最高奖项、获得巨大的荣誉,却又在自己的国家被看成是眼中钉、被政府挖空心思陷害再安上罪名投入监狱?

这篇报道的标题叫《缅甸大屠杀》,详细讲述了2017年9月2日缅甸军队洗劫烧毁罗兴亚人聚居的一个村庄,屠杀包括两名中学生在内的10名罗兴亚平民的过程。


罗兴亚人是缅甸境内的一个穆斯林族群,全缅甸有100多万罗兴亚人,大部分生活在缅甸西部临近孟加拉的若开邦。

这些罗兴亚人的祖辈来自孟加拉和印度,在缅甸已经繁衍生息了好几代,缅甸其实就是他们的故乡。

但罗兴亚人又是一群没有国籍的浮萍,因为他们世居了好几代的缅甸一直不承认他们是缅甸国民。他们就如同隐形人一样没有身份,也没有任何公民权利,连人口普查的时候都不被统计在内。

缅甸民间,一般的大众也对罗兴亚人十分排挤和歧视。缅甸人甚至连罗兴亚这个名词都不承认,曾经有联合国和美国的官员在正式场合使用了罗兴亚人这个说法而引起从官方到民间的强烈抗议。

在以前,身为穆斯林的罗兴亚人和信仰佛教的缅甸人在同一个村子里划地而居,倒也相安无事。但最近几年,随着罗兴亚人和缅甸人的冲突加剧,缅甸政府频繁地对罗兴亚人进行种族清洗。

缅甸军队开进一个个村庄,烧掉他们的房子,抢走他们的身家财物,驱赶他们离开。到目前为止,一共有70万人逃到临近的孟加拉等国家,称为难民。

罗兴亚人的处境引起了国际社会的极大关注,联合国称之为是“教科书级的种族清洗”,也有媒体称罗兴亚人是“被迫害最严重的少数民族”。

逃离出缅甸的罗兴亚人还指控缅甸军队滥杀平民,但缅甸官方断然否认。

2017年10月,两名记者瓦隆和觉梭在若开邦采访时偶然从摩的司机口中得知:前阵子刚有10名罗兴亚人被杀死。他的口吻非常平静,像是在讲述一个邻里八卦,似乎并不觉得自己在透露一个多大的秘密,也不觉得这是一件多么残忍的事。

两人于是马上赶到这个叫茵丁(Inn Din)的村子,他们采访到的很多若开族村民都确认了这件事。

村民们给了他们两张照片。其中一张照片的拍摄时间是2017年9月1日晚上,那10名罗兴亚人双手被绑跪地排成一排,他们的身后有几名持枪的警察。


而另一张照片的拍摄时间则是第二天的早上,那10名罗兴亚人已经东倒西歪地倒在地上,很明显已经死亡。

两名记者一一查证了这10个人的身份,发现他们都只是渔夫、教师、小店店主之类的平民,甚至其中还有两人是未成年的中学生,而不是如缅甸官方宣称的那样是武装的恐怖分子。

路透社在孟加拉的记者也在难民营里找到了10名死者的亲人,再一次证实了这些人的平民身份。


在村民的带领下,他们还找到了埋着尸体的墓坑,地上还散落着不少尸骨。


回到仰光之后,两名记者继续进行采访。他们发现照片里警察的枪上印的字依稀像是缅甸文数字“8”,推断第8警察营(缅甸警察的准军事部队)参与了这次行动。

于是他们打印出照片,分头搜集第8警察营警察的电话号码,再根据电话搜寻到了不少警察的Facebook账号,从发帖和定位里寻找线索。他们采访到的好几名警察都确认了有军队和警察参与这次行动。

还有卫星图片的对比。2017年5月的这张Google卫星图片记录下的是茵丁村过去的样子。左上角蓝色小房子的区域,是若开族村民的家,其余的区域则属于罗兴亚人。这个7000人的大村子,曾经有90%的人口是罗兴亚人。


到了2017年9月,罗兴亚人的房子已经全部被烧毁,在卫星图片上显示出来的是一片焦土。


在这张若开邦的地图上,黄点显示的是被部分摧毁的罗兴亚人聚居区,一共有214个;红点显示的是被完全抹去夷为平地的罗兴亚人聚居区,一共有178个。


信息一点点浮现,拼凑出一幅完整的画面,还原出一个骇人听闻的真相。

2017年12月,两名记者的采访引起了缅甸军队的注意,于是就发生了开头提到的那戏剧化的设局抓捕。

那之后路透社其他记者继续对报道进行完善。2018年2月,两名记者被捕两个月以后,路透社对外发出这篇报道,这是能用来指控缅甸军队有计划有组织地对罗兴亚人进行种族清洗和种族屠杀的第一份强有力的证据,震惊了国际社会。

在事实面前,缅甸官方不得不承认军人有过激行为。随后为了平息国际社会的争议,几名参与行动的士兵被起诉法办。

但揭露真相的瓦隆和觉梭两名记者,却同样也被判了7年有期徒刑。

这个月月初终于有一个好消息,在国际社会持续施加的压力之下,原本姿态强硬的缅甸政府特赦了这两名记者,两人在被关押了500多天以后重获自由。

但是即使出狱,他们的命运也彻底改变了,未来的处境也许并不会好过多少。

因为敌视他们的,不仅仅是缅甸政府,还有缅甸的人民。

罗兴亚问题在缅甸太敏感了,涉及非常复杂的民族情绪。即使是被缅甸人尊敬爱戴的昂山素季,也不敢在这个问题上对此有任何的违逆,三番五次地回避对这个问题做出国际上认可的表态。

为此,昂山素季的母校牛津大学在校园里摘下了她的画像,加拿大议会一致投票决定取消曾经授予她的加拿大荣誉公民称号,更有几十万人发起请愿要求吊销她所获得的诺贝尔和平奖。但对于昂山素季来说,在国际上身败名裂,给自己留下历史污点,恐怕都比不过在国内失去民意支持来得可怕。

所以你可以想象,那两名揭开罗兴亚人被屠杀真相的记者,会承受多大的压力。

缅甸人认为这两人背叛了缅甸,Facebook上充斥对两人的辱骂,其中不乏死亡威胁。

觉梭的妻子因为无法忍受邻居的非议和担心自己的人身安全而搬到了仰光。

瓦隆的妻子之前在接受《时代》采访的时候说:“我Facebook上的一些好友攻击我,问我说为什么不管一下我的丈夫。他们说他和觉梭都是叛徒,我对此已经麻木了。”

觉梭说他本来宁愿去做地产经纪也不想当记者,可是,“如果我们这一代人不解决这个问题,我的女儿就会承受后果。”

瓦隆和觉梭只是尽到了记者最基本的职责:寻找真相、记录真相,仅此而已。而真相,是解决问题的第一步。


瓦隆和觉梭是叛国者吗?当然不是。站在外人的角度,我们很容易做出判断。

但缅甸人,面对民族、宗教这些更大的词,也许就很难再做出这样的判断。

这也许正是记者这个职业的悲哀和孤独之处:当你苦苦地探寻真相,却发现自己面对的敌人不仅仅是想要封锁真相的当权者,有时候还有那些不愿意接受真相的人民。


原文链接:https://mp.weixin.qq.com/s/UEtBiwp-LJnmz-WcqsUY2Q


编辑:董莉


278#
发表于 2019-6-12 13:35:35 | 只看该作者
【案例】



编辑:董莉

279#
发表于 2019-6-17 22:14:58 | 只看该作者
【案例】

屠呦呦团队放“大招”?团队成员:我们内部认为只是一个进展


原创: 科技日报  科技日报  今天
此文独家供稿腾讯平台,第三方未经授权不得转载。
科技日报记者 张盖伦 付丽丽


17日早,如新华社前夜预告的那样,屠呦呦团队的“大招”公布了。
这一大招,主要指的是屠呦呦团队4月24日在国际顶级医学期刊新英格兰医学杂志在线发表的题为《A Temporizing Solution to Artemisinin Resistance》的展望文章。该文章系统总结了最近在治疗疟疾时所遇到的困难,同时给出了解决方案。
当时,就有媒体以《青蒿素抗药性有合理应对方案》为题进行了报道。两个月过去,它突然再成热点,让很多圈内人士都感到有些意外。
一大早,记者来到屠呦呦团队办公的中医科学院中药研究所,楼外还在施工改造。尽管成了外界关注的焦点,但小楼内部依然安静。


作者供图


青蒿素的抗药性,是屠呦呦先生一直关心的问题,也是全球抗疟面临的最大挑战。起初,柬埔寨最早报道患者接受青蒿琥酯治疗后体内寄生虫清除速度减慢,这一现象为研究人员敲响了警钟。之后,缅甸、泰国、老挝和中国(统称为大湄公河次区域)等亚洲国家均观察到寄生虫清除出现类似延迟。
2016年,有媒体记者在诺贝尔奖得主的新闻发布会上问屠呦呦,诺贝尔奖会给她的科研带来什么改变。屠呦呦直言,我关心的是青蒿素抗药性的问题。至于得奖之后会怎样,她“不大感兴趣”。
如今,对青蒿素的抗药性研究,取得了阶段性进展。
屠呦呦团队成员、中国中医科学院青蒿素研究中心研究员王继刚告诉科技日报记者,根据研究,青蒿素在人体内半衰期(药物在生物体内浓度下降一半所需时间)很短,仅1至2小时,而临床推荐采用的青蒿素联合疗法疗程为三天,青蒿素真正高效的杀虫窗口只有有限的4至 8小时。而现有的耐药虫株充分利用青蒿素半衰期短的特性,改变生活周期或暂时进入休眠状态,以规避敏感杀虫期。同时,疟原虫对青蒿素联合疗法中的辅助药物“抗疟配方药”也可产生明显的抗药性,使青蒿素联合疗法出现“失效”。




为什么这样说?王继刚表示,近期阐明的青蒿素类药物作用机制表明,它们是由铁或血红素激活的前体药物。铁和血红素是血红蛋白消化后产生的副产品,在疟原虫滋养体成熟期达到最高浓度。青蒿素类药物一旦被激活,它们就会将寄生虫的许多蛋白质和血红素烷基化。血红素烷基化也可抑制血红素解毒过程。“据推测,单一蛋白质靶点的突变不太可能引起耐药,这可能也解释了为什么青蒿素类药物在广泛应用数十年之后仍然有效。”
针对此,屠呦呦团队提出了新的治疗应对方案:一是适当延长用药时间,由三天疗法增至五天或七天疗法;二是更换青蒿素联合疗法中已产生抗药性的辅助药物。
也许有读者会问,有没有可能研发出替代青蒿素类的药物?王继刚认为,短时间内,在效力、安全性和耐药风险方面优于青蒿素类药物的下一代抗疟药似乎不太可能出现。而且,大多数ACT价格低廉(例如加纳一个蒿甲醚-苯芴醇疗程的费用不到10美元),药物研发项目的高昂成本会影响新药的价格,并有可能阻碍最有需要的患者获得药物。
“在可预见的未来,继续合理和战略性地应用青蒿素联合疗法(ACT)是应对治疗失败的最佳解决方案,也可能是唯一解决方案。”王继刚强调。
团队成员、中国中医科学院研究员廖福龙17日接受科技日报记者电话采访时表示,目前新的治疗方案还没有应用于临床,仍需多方协调,并根据地域不同进行调整,真正落地应用的时间表还不清楚。
“这是一个重大突破还是一个研究进展?”面对记者的问题,廖福龙坦言:“我们自己内部的评价认为,这是一个进展”。王继刚也认为,作为科研人员,他们更愿意用“进展”来表述。
同样根据新华社报道,青蒿素治疗红斑狼疮的一期临床试验结果谨慎乐观。
双氢青蒿素对治疗具有高变异性的红斑狼疮效果独特。目前已开展一期临床试验。试验表明,青蒿素对治疗红斑狼疮存在有效性趋势。对此,王继刚和廖福龙也表示,关于双氢青蒿素治疗红斑狼疮的作用机理,还有待进一步研究。

(科技日报记者杨朝晖对本文亦有贡献)





编辑:王豪
280#
发表于 2019-6-19 21:42:40 | 只看该作者
【案例】

隧道

发表回复

您需要登录后才可以回帖 登录 | 实名注册

本版积分规则

掌上论坛|小黑屋|传媒教育网 ( 蜀ICP备16019560号-1

Copyright 2013 小马版权所有 All Rights Reserved.

Powered by Discuz! X3.2

© 2016-2022 Comsenz Inc.

快速回复 返回顶部 返回列表